

AI-Assisted Segmentation in **Retinopathy of Prematurity Images**

Michael F. Chiang, MD Knowles Professor of Ophthalmology & Medical Informatics and Clinical Epidemiology Associate Director, Casey Eye Institute Oregon Health & Science University

Disclosures & Collaborators

- Imaging & Informatics in ROP (i-ROP) • NIH (R01EY19474, R21EY22387, P30EY105072, K12EY27720, T32EY23211), NSF (SCH-1622679), Research to Prevent Blindness
- Clarity Medical Systems (unpaid member of Scientific Advisory Board), Novartis (RAINBOW Steering Committee), Inteleretina (member)
- AAO Board of Trustees, Telemedicine Task Force, IRIS Registry Data Analytics Task Force (Chair), IRIS Registry Executive Committee

Retinopathy of Prematurity (ROP)

- Leading cause of childhood blindness
 - Bedside ophthalmsocopy in NICU
- Very limited access to care
- ICROP (1984):
 - International standard for clinical exams, infrastructure for multicenter trials
 - Parameters: zone (I-III), stage (1-5), extent (clock hours), plus disease
 - Many fields don't have this standardized terminology... Clinical trials: **plus disease** is most critical parameter for treatment-requiring ROP → "arterial tortuosity & venous dilation" (**standard published photo**)
 - ICROP. Arch Ophthalmol 1984; 102:1130-4

Oregon Health & Science University

Machine Learning Overview

Segmentation

- Feature extraction
 - Examples: vascular curvature, branching, dilation
- Feature representation
 - Combine image features (e.g. mean, two largest values, Gaussian mixed models)
- Classification
 - Examples: support vector machine, K-nearest neighbors

3

Classifier Expert 1	Accuracy (vs. RSD) 64/73 (87%)	Manual image segmentation
Expert 3	58/73 (79%)	
Expert 4	72/73 (99%)	
Expert 5	64/73 (88%)	 Best performance with circular crop, accelerat feature
Expert 6	62/73 (85%)	
Expert 7	68/73 (93%)	
Expert 8	64/73 (88%)	 Combination of features using GMM approach, S classifier
Expert Consensus	71/73 (97%)	
Computer System	69/73 (95%)	

- & sis
- DD on
- Μ

Coyner, et al. Ophthalmol Retina 2019. In press

AUC 0.959 for Adequate quality images (5-fold cross validation), 0.965 (test set)
 30 images rank ordered from lowest to highest quality (6 experts): Spearman correlation coefficient = 0.90 compared to overall consensus rank ordering
 Coyner, et al. Ophthalmol Retina 2019. In press.

Summary

- Ophthalmic diagnosis is subjective & qualitative
 - Significant inconsistency in both diagnostic classification and process
 - Potential role of artificial intelligence to improve consistency
 Bar for systems should be "human-like", and validation requires multiple experts
- Role of artificial intelligence in image segmentation & image quality
 - Significantly better performance of deep learning methods for vessel segmentation
 - But critical importance of explainability (what it means to "look bad"), and evidence that feature extraction is still extremely important
- Diagnostic classification vs. screening
 - Importance of differing levels of FDA oversight based on intended use