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Retinopathy of Prematurity (ROP)

¢ Leading cause of childhood blindness
— Bedside ophthalmsocopy in NICU
— Very limited access to care

o ICROP (1984):

International standard for clinical exams,
infrastructure for multicenter trials

Parameters: zone (I-III), stage (1-5), extent (clock
hours), plus disease

— Many fields don't have this standardized terminology...

— Clinical trials: plus disease is most critical parameter
for treatment-requiring ROP - “arterial tortuosity &
venous dilation” (standard published photo)

ICROP. Arch Ophthalmol 1984; 102:1130-4
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Challenge: Disagreement in
Diagnosis

* 3 (14%) experts: “Plus” e 11 (52%) experts: “Plus”
* 18 (86%) experts: “Not Plus” e 10 (48%) experts: “Not Plus”

Chiang et al, Arch Ophthalmol 2007; 125: 875-80.

Challenge: Disagreement in Process

+ Expert 1: Diagnosis Plus Disease

looks ke a very low gestational birth baby, ifs taken quite a long time
10,6t o this stage. Tharo is a kot of arterial tortuosity. there (s a ltte bit of venous

super L more i the

superior half of the rotina, By dofinition | think thes has to be plus, becauso 1's two.
quadrants st least. and even the other quadrants acent normal

1 don't knaw whether the peripheral disease s that bad, & may ot be
actually, could be.

+ Expert2: Diagnosis Pre-Plus Disease

theee is a lot of tortuosity of the arteries, the veins are about 2to
1. This could eiter be a pre-plus eye or a normal variant, depensng o0 a quick
ook at the periphery.

 there is & lot of v #looks
ik there is disease up thers.
fact that tortuosdy Is everywho, you want 1o make sure i it's a
congenital lortuosity k.
| would suspoct pre-plus, could ko be a normal variant.

+ Export 4 Diagnosis Neither Pre-Plus nor Plus Disease
vessels seerm Lo be branching excessively in thal region
wed, and

his vein looks too fat (superotemporal)

if were lie this.
1twousd be at least pre-pis and verging on plus, but since Its only one
quadrant thal's highly questonabie.

Wwould not ciassify it as plus. | coukd see why some would call i
pre-plus, | would not cal it pre-phus, | woud cail it no plus.

Hewing et al, JAMA Ophthalmol 2013; 131:1026-32.

Approach: Artificial Intelligence

Sze et al. (2017)
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Machine Learning Overview

+ Segmentation

+ Feature extraction

— Examples: vascular curvature, branching, dilation

* Feature representation
— Combine image features (e.g. mean, two largest
values, Gaussian mixed models)
¢ Classification

— Examples: support vector machine, K-nearest
neighbors

Machine Learning for Segmentation: Clustering

Retina Image Clustering (vesselness)
« Original retinal image I
- Pre-processing to
emphasize vessels —_—
o Clustering algorithm ‘

— Vessels vs. not vessel (e.g.
Gaussian mixed model,
Frangi filter)

Segmentation

« Thresholding

— Foreground vs. background
(B&W)

¢ Post-processing
— Remove spurious areas

Ataer-Cansizoglu, Pattern Recognition Letters 2012; 46: 1140-50.

Machine Learning Segmentation: Results

* Reference
standard:
manual
segmentation by
experts (100
images)

Original image

Manual

« Performance: segmentation

— Accuracy: 0.94 =
0.02
— Sensitivity: 0.64 = Automated

segmentation
— Specificity: 0.95 +

Ataer-Cansizoglu, Pattern Recognition Letters 2012; 46: 1140-50.
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Classifier Accuracy (vs. RSD)
Expert 1 64/73 (87%)
Expert 2 63/73 (86%)
Expert 3 58/73 (79%)
Expert 4 7273 (99%)
Expert 5 64/73 (88%)
Expert 6 62/73 (85%)
Expert 7 68/73 (93%)
Expert 8 64/73 (88%)

Expert Consensus 7173 (97%)
Computer System 69/73 (95%)

Ataer-Cansizoglu et al, Trans Vis Sci Technol 2015; 4:5

Machine Learning: Diagnostic Classification

Manual image
segmentation

Reference standard:
combines image reading &
ophthalmoscopic diagnosis

Best performance with 6DD
circular crop, acceleration
feature

Combination of features
using GMM approach, SVM
classifier
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Deep Learning Overview
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Brown et al. JAMA Ophthalmology 2018; 136:803-10.

Deep Learning for Segmentation
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Deep Learning for Segmentation: Examples

Original image

Manual
segmentation

Automated
segmentation

Deep Learning: Diagnostic Classification

Fully-automated CNN: AUC 0.98 for diagnosis of plus disease (5-fold cross-validation)

Independent test set (100 images): 91% accuracy (8 experts: mean 82% accuracy, range 77-94%,
outperformed 7/8 experts)
Quantitative severity score: potential for disease screening & prediction

Brown et al. JAMA Ophthalmology 2018; 136:803-10.
Redd et al. Br J Ophihalmol 2019. In press.

What About Image Quality?

c “Not acceptable”

“Acceptable” “Possibly acw!able”

%

+ Varying levels of real-world image quality > 6,139 posterior images graded by 3 experts,
including quality metric
« Train CNN (Inception V3, weights initialized after training with ImageNet) to identify

Acceptable quality images, 5-fold cross-validation on 4,000 images (remainder as
independent test set)

Coyner, et al. Ophthalmol Retina 2019. In press.
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Deep Learning for Image Quality
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« AUC 0.959 for Adequate quality images (5-fold cross validation), 0.965 (test set)

« 30 images rank ordered from lowest to highest quality (6 experts): Spearman correlation
coefficient = 0.90 compared to overall consensus rank ordering

Coyner, et al. Ophthalmol Retina 2019. In press.

Summary

* Ophthalmic diagnosis is subjective & qualitative
- Significant inconsistency in both diagnostic classification and process
~ Potential role of artificial intelligence to improve consistency

~ Bar for systems should be “human-like”, and validation requires multiple experts
* Role of artificial intelligence in image segmentation & image quality

~ Significantly better performance of deep learning methods for vessel segmentation

~  But critical importance of explainability (what it means to “look bad”), and evidence that
feature extraction is still extremely important

« Diagnostic classification vs. screening

- Importance of differing levels of FDA oversight based on intended use
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