Clinical Standards for Assessment of Novel Anterior Segment Measurements

Yasmin Bradfield, MD John W. Doolittle Professor Department of Ophthalmology and Visual Sciences University of Wisconsin- Madison

• I have no financial interest in this presentation

What is the best way to validate AS OCT measurements?

- Clinically accepted way that could translate into "scientifically accepted"
- Agreement, accuracy, reproducibility of AS OCT measurements
- Large population studies of normal and ocular disease
 - Normal variance
 - Age, gender, racial differences

Where are we in 2019?

- Which human anterior segment structures have been imaged by AS OCT?

- What has been used as comparison to validate new data?
- Large population study data available?

Current AS OCT devices

- Faster image acquisition, higher axial resolution, Ultrahigh 1-2 μm Potential disadvantage- shorter scan depth
- - Frequency swept light source and high speed detector detects interference signal as a function of time, instead of a spectrometer and camera in spectral domain technology
 Deeper tissue penetration without shadowing artifacts (vessels)
- Microscope-integrated OCT

Handheld Anterior Segment OCT

Facilitates use in the operating room Video capture of scanned images Allows selection of best image

tment

Ocular conditions imaged with AS OCT

Eye Condition/Disease	Qualitative Parameters	Quantitative Parameter:
Corneal dystrophy, ectasia	Extent of deposits or bullae, corneal thickness Position of graft to host cornea Scleral lens positioning	Thickness of cornea (µm Depth of crosslinking trea
Dry eye	Tear film analysis	Tear film thickness
Ocular surface neoplasia	Neoplastic features of lesion	
Angle closure/narrow angle	Angle opening distance (AOD)	AOD measurement (mm)
	Trabecular iris space area (TISA)	TISA measurement (mm ²
	Anterior chamber depth (ACD)	ACD measurement (mm)
	Lens vault (LV)	LV measurement (mm)

Ocular conditions imaged with AS OCT

Eye Condition/Disease	Qualitative Parameters	Quantitative Parameters
Glaucoma	Presence of Schlemm's canal	Area of Schlemm's canal (µm2)
	Presence of bleb	
Pediatric glaucoma	Presence of Schlemm's canal, Abnormal angle features	Area of Schlemm's canal (μ m ²)
Iris mass	Cyst or malignant features	Size of mass (mm)
Pseudophakia	IOL position	
Strabismus (reoperations, trauma)	Extraocular muscle insertion	Insertion (mm) from corneal limbus
		Ŵ

Few established parameters

- Primary or secondary outcomes in clinical trials
 Angle parameters for predictor of angle closure
 - Corneal graft positioning
- Exploratory outcomes
 - % change in SC area after introducing IOP lowering drug or surgery
 - Changes of extraocular muscle insertion over time
 - Cornea ectasia changes after cross linking or contact
 - lens treatment

Comparison of imaging devices to validate AS OCT data

	ASOCT	UBM
Technology	Optical	Ultrasound
Resolution	15 µm	50µm
Longest scan dimensions	16 x 6 mm	5 x 5 mm
Contact with eye	No	Ultrasound probe does not contact the eye directly but requires immersion bat
Real-time imaging	Yes	Yes
Imaging posterior to iris	No	Yes
Quantitative measurement	Yes	Yes

Schlemm's canal AS OCT vs Ultrasound Biomicroscopy (UBM)

Standardization of Obtaining AS OCT Images

• Learning curve

- Environmental factors- Lighting? Diurnal variances? Changes with accommodation (SC)?
- Currently no standardized scanning protocol
- Reproducibility of current AS OCT measurements?

Reproducibility of AS OCT

- Compared the Tomey CASIA and Heidelberg Spectralis AS OCT devices
- Autor Hearing parents, 20 eyes
 Lens vauit, pupil diameter, AC width, angle opening distance, Trabecular iris space area, scieral spur angle
 High intra-device reproducibility of measurements for both devices
- Values (BY et al. Reproducibility and Agreement of Anterior S assurements Obtained Using CASIA2 and Spectralis O sherence Devices. J Glaucoma 2017:974-979.

Reproducibility of AS OCT

- Compared the swept source Fourier-Domain Tomey CASIA and Time-Domain Visante AS OCT
- Adult patients with and without glaucoma, 53 eyes
- Moderate inter-device agreement but bias in several angle parameters, CASIA larger measurements consistently
- · Cannot interchange devices when evaluating individual patient

Reproducibility of AS OCT

e tomography and correlation study an child population. Acta Ophthalmo

Intra-observer	Mma ± SD	ICC	95% CI
SC diameter temporal (a	(m)		
Senice 1	299 m 77	0.963	0.937-8.979
Senice 2	255 ± 80		
SC diameter nasal (am)			
Senice 1	293 # 75	0.987	0.970-0.995
Senice 2	290 - 76		
SC area temporal (ans ²)			
Session 1	0.011 ± 0.004	6.972	0.933-0.988
Session 2	0.011 ± 0.004		
SC area nasal (are')			
Senice I	0.010 - 0.003	0.955	0.910-0.978
Session 2	0.010 ± 0.003		
Inter-observer	Mean ± SD	ICC	95% CI
SC discuster temporal (
Observer 1	223 + 77	0.962	0355-0387
Observer 2	338 + 87		
SC dispeter nexal (am)			
Observer 1	293 + 75	0.995	0.945-0.994
Observer 2	295 ± 73		
SC area treasured (area)			
Observer 1	0.011 + 0.004	0.956	0.893-0.981
Observer 2	9.002 = 0.005		
SC area pasal (are)			
Observer 1	0.000 ± 0.003	0.936	0.816-0.973
Observer 2	9.011 ± 0.003		

Need larger studies for accuracy

- Need at least 4 AS OCT measurements to determine an average measurement on an anterior segment parameter
- Need at least 8 AS OCT measurements when determining range of measurements in high variability parameters
- Range and mean values deviated 44% and 13% if used only
 AS OCT measurement

Xu BY et al. Benefit of Measuring Anterior Segment Structures Using an Increased Number of Optical Coherence Tomography Images: The Chinese American Eye Study, 10VS 2016.6319-6319..

Comparison of imaging devices to validate newer AS OCT data

- What if there is no prior imaging device to use for comparison?
- Abnormal tissue or new angle findings in glaucoma patients
- Aqueous humor outflow pathways
 -Collector channels contiguous to Schlemm's
 canal

Deposits within tube shunt

Intrascleral lumen- contribute to outflow?

Doppler to assess flow within an imaged structure WISCONSIN

Anatomy correlate with function?

- Children 4-16 yo AS OCT after cataract surgery
- Smaller SC compared to normal children
- No increase in SC size with accommodative effort, seen in normal eyes
- SC changes after lensectomy may play a role in outflow reduction, thus contributing to glaucoma development

Daniel MC et al. Childhood lensectomy is associated with static and dynamic reduction in Schlemm's canal size. Ophthalmology. 2018;1-9.

Anatomy correlate with function?

- SC in eyes with higher IOP may be compressed or collapsed
- IOP elevation reduces SC cross-sectional area imaged with AS OCT in normal human adults

Kagemann L, Wang B, Wollstein G, Ishikawa H, Nevins JE, Nadler Z, Sigal IA, Bilonick RA, Schuman JS. 10P elevation reduces Schlemm's canal cross-sectional area. Invest Ophthalmol Vis Sci. 2014 Mar 25;55(3):1805-9.

Anatomy doesn't necessarily equal function

- Assumption that larger SC is better
- In normal population, SC cross sectional area wide variability 1664-6007 $\mu {\rm m}^2$
- How do we know that a larger SC doesn't mean there's fluid stasis in the imaged structure?

Aqueous angiography

Huang AS, Francis BA, Weinreb I and functional imaging of aqueou a review. Clin Exp Ophthalmol. 2

Role for animal models to validate newer AS OCT data?

- Several species studied
- Mice and rats most commonly studied due to anatomic similarities to humans, rodent-adapted OCT technology
- Corneal and anterior chamber features
 - Ocular inflammation, infection- quantify AC cells
- Corneal transplant and wound healing
- Drug delivery/cell therapy

luid gel containing polarized macrophages in mouse model Potential use in drug delivery system

INICAL AND EXPERIMENTA **OPTOMETRY**

INVITED REVIEW

Anterior segment optical coherence tomography and its clinical applications: a review

- Clin Exp Optom 2019 82 total studies
- •

- No randomized trials, scarce high level evidence

Clinical Standards for Assessment of Novel Anterior Segment Measurements

- Need large population studies to determine "normal" from disease, standard scanning protocol
 Role for image processing software technology for enhanced AS OCT resolution
 Imaged AS OCT anatomy doesn't necessarily translate to function
- Potential future use can be impactful in determining spectrum of ocular disease, individualized patient treatment planning W

W

